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ABSTRACT 

 

 The upfront costs of the installation of a vibration damping system in a structure can be 

significant with respect to total structural costs.  A detailed life-cycle cost analysis of the benefits 

of incorporating a damping system in a structure can show that much of the upfront costs are 

offset by savings occurring either at the time of construction or over the life of the structure. 

Semi-active dampers are a modern type of vibration damping system that has received increasing 

amount of attention in the structural community for its increased performance capabilities with 

respect to passive systems and significantly lower power requirements with regards to active 

damping systems.  

Currently, there is a gap in the research community between the performance and cost of 

semi-active dampers.  This study aims at closing this gap by evaluating the current performance 

of passive systems and existing data on semi-active systems.  First, we discuss cases where 

researchers proved that passive dampers can be cost effective while providing significant 

structural benefits.  Secondly, we discuss how other research has shown that semi-active 

dampers can perform better than passive dampers and in some cases with fewer dampers, which 

could imply a lower-cost, better-performing damping system than those currently used in 

practice.  Thirdly, we discuss the possible shortcomings and the unknown characteristics of 

semi-active damping systems, including lack of testing on the resiliency of semi-active dampers 

and sensors over time, the power requirements for semi-active dampers, the over-idealized 

testing procedures with control algorithms greatly optimized for a predetermined excitation 

sequence and the future of codified structural design with regards to structural resiliency in 

addition to life safety guidelines. The research indicates the possibility of semi-active damping 
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being a more effective damping solution with regards to performance and cost savings compared 

to passive damping, but more research on semi-active damping is required to affirm the 

aforementioned claim. 
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CHAPTER 1: INTRODUCTION 

1.1. INTRODUCTION 

 

Motion of civil structures via unpredictable loading has been a topic of concern and research 

for decades, because wind and seismic loading on structures can induce displacements with 

magnitudes and dynamic properties sufficient to cause discomfort to occupants or even critically 

damage the structure. In an effort to increase occupant comfort while increasing the safety and 

performance of structures during seismic and wind loading events, several solutions have been 

proposed, many of which have been practically and effectively deployed. Increasing the damping 

ratio of a structure is one of many possible ways to mitigate displacement and acceleration due to 

various types of excitation; adding mass or adding stiffness to a structure are viable alternatives, 

but may be less effective than damping. As shown in Figure 1,  even the addition of 30% mass or 

30% stiffness to a structure is significantly less effective at reducing building accelerations and 

base moments than even a modest increase in the energy damping properties of a structure 

(Irwin, Kilpatrick, Robinson, & Frisque, 2008).  The upfront cost of many of the vibration 

damping systems used in the design and retrofitting of structures can be significant with respect 

to the total construction costs, however when life-cycle cost analyses are performed the benefits 

provided by passive damper systems produce reduced upfront costs and in many cases actually 

pay for themselves entirely, as discussed in Chapter 3.  
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Figure 1 - Relative Effects on Building Motion of Changing Damping 

 Adapted from (Irwin, Kilpatrick, Robinson, & Frisque, 2008) 

 

1.2 PROBLEM STATEMENT 

 

Recent research has shown that semi-active dampers can outperform passive dampers, 

sometimes even while using as few as one third the number of damper units. There is a gap in the 

research community between what is known about the performance and cost of semi-active 

dampers.  This study aims at closing this gap by evaluating the current performance of passive 

systems and existing data on semi-active systems. Factors that influence the cost of semi-active 

dampers and require additional research will also be evaluated and tabulated. 
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CHAPTER 2: BACKGROUND 

 

Consideration must be given to the type of loading expected on the structure, because 

some damping systems can excel at mitigating vibration from some loading types while being 

less effective at mitigating with others. An explanation of various loading types and their 

behaviors are discussed herein, followed by an overview of the various types of damping 

systems and classifications. 

2.1. TYPES OF LOADING 

 

Humans begin to feel discomfort when the lateral acceleration to which they are exposed 

reaches approximately 0.02g. Loads that affect civil structures include harmonic, periodic, 

transient and impulsive load (Bachmann & Ammann, 1987). Some damping systems excel at 

mitigating a few types of loading but are ineffective or significantly less effective at others. 

Typical time functions of dynamic loads are shown in Figure 2. 

2.1.1. Harmonic loading 

 

Harmonic loading varies with time according to a sinusoidal fuction, and affect the 

structure such that a steady-state vibration response is possible (Bachmann & Ammann, 1987). 

Harmonic loading is typically caused by machine operation.  

2.1.2. Periodic loading 

 

Periodic loading produces random excitation over the course of one load cycle or period, 

which is repeated for a long enough time for a steady-state response to develop (Bachmann & 

Ammann, 1987). Periodic loading can be caused by machine operation, human motion or wind. 
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2.1.3. Transient loading 

 

Transient loading produces random excitation over a random amount of time, with no 

periodicity.  Transient loading can be caused by wind, water waves and earthquakes  (Bachmann 

& Ammann, 1987). 

2.1.4. Impulse loading 

 

Impulsive loading is a special case of transient loading that occurs over a very short 

amount of time, which can be caused by construction, impact, blast waves (via explosions) or a 

loss of support or earthquakes with very short durations (Bachmann & Ammann, 1987). 

 

 

Figure 2 - Loading Types 
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2.2. TYPES OF DAMPING SYSTEMS 

 

There are many methods proposed to accomplish the task of reducing occupant 

discomfort due to lateral accelerations and reduce structure damage due to excessive vibration 

and displacement. Varying the mass or the stiffness characteristics of a structure are effective, 

but not as efficient, as changing damping characteristics, as shown in Figure 1. Damping systems 

are primarily separated into three types: active, semi-active and passive systems.   

Several common passive damping systems include but are not limited to viscous, tuned 

mass, and base isolation damping. Passive damping systems have set parameters based on an 

expected loading envelope for a given area and an expected structure self-weight and are not 

designed to react effectively outside of that range, which results in a conservative design. Passive 

damping types are described in the following sections. 

 

2.2.1. Viscous dampers 

 

Viscous damping can be subdivided into two categories, fluid and solid material 

damping. The amount of energy dissipated by viscous fluid damping is dependent on the rate of 

deformation, while the energy dissipated by solid material damping is dependent on the total 

displacement of the system as well as the rate of deformation.  A viscous damping system 

utilizing both fluid and solid damping methods is shown in its most simplistic of idealizations in 

Figure 3, represented by a spring “k” and a dashpot “c” within the member oriented in the 

direction of the expected axial forces “F” and deformation, “x”.  
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Figure 3 - Viscous Damping Approximation 

2.2.2. Tuned mass dampers 

 

A Tuned Mass Damper is a device which consists of a mass attached to a structural 

system and is used to reduce the dynamic response of a structure to a predetermined loading. A 

simplified figure illustrating the use of a Tuned Mass Damper is shown in Figure 4, where 

natural damping properties of the structure are approximated as one set of spring and dashpot 

and natural methods of attaching the tuned mass to the structure create damping properties on the 

mass approximated by the second set of spring and dashpot.  The properties of the Tuned Mass 

Damper, including the exact mass and the precise location of the mass are calibrated with the 

dynamic properties of the structure such that when any of the predetermined frequencies of 

excitation are reached, the mass will vibrate out of phase with the structure, reducing overall 

displacement and energy in the structure (Connor, 2003). 
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Figure 4 - Tuned Mass Damping Approximation 

 

2.2.3. Base isolation 

 

The concept of base isolation as it relates to mechanical equipment has been used for 

over a hundred years to prevent harmonic or periodic loading from machines from being 

transferred to their supports.  The same idea relates to civil structures by employing various 

materials to create a pseudo-discontinuity between a foundation and a superstructure such that 

during a seismic event the load induced on a structure is significantly reduced (Naeim & Kelly, 

1990). Many modern structural base isolation systems utilize steel-reinforced elastomeric rubber 

bearing pads, but while bearing pads alone are adequate for seismic loading, they allow 

excessive deflection from wind loads imposed directly on the structure and other low-level loads.  

A common solution is to pair rubber bearing pads with springs or steel rods designed to behave 

elastically up to a certain point and offer increased lateral stiffness, but yeild when loading 

exceeds a certain threshold so as not to counteract the benefits of the rubber pads  (Connor, 

2003).  One widely-utilized example of a solid elastic damper is the lead-core elastomeric 

bearing pad, as shown in Figure 5. 
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Figure 5 - Elastomeric Bearing Pad with Lead Core 

 (Base Isolation: The Seismic Zone, 2013) 

 

2.2.4. Active damping 

 

The concept of Active Damping control is vastly different than the previous damping 

solutions discussed. Active Damping systems use external sources of energy to optimize their 

system properties for a wide envelope of loading. Active Damping integrates three main 

components: a Monitor, which acquires data from sensors placed throughout the structure a 

Controller, which is a data processing unit that decides on a course of action for the given 

circumstances and Actuator(s), which carry out the commands imposed by the Controller 

(Connor, 2003). Active control involves monitoring the system input and the structural response 

so that changes can be made to the input to optimize a system response for the real-time 

situation. The act of optimizing a system response can be achieved in many ways, depending on 

the design selected by the structure owner; actuators may be used to move a large mass or 
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masses on the structure, or even expand or contract cross-bracing elements in a structural 

framework to dissipate energy. 

2.2.5. Semi-active damping 

 

Semi-Active Damping systems offer the adaptability of active damping systems without 

requiring the requisite large power source. A semi-active system cannot increase the energy in 

the system (which includes the damping system and the structure) but has properties that can be 

dynamically varied. Semi-active damping systems are effective because of their mechanical 

simplicity, robustness, low power requirements and a level of effectiveness similar to fully active 

damping systems (Dyke, Spencer Jr., Sain, & Carlson, 1996).  

There are an ever-growing number of semi-active damping devices and an even greater 

number of applications for those devices.  One example is the magneto rheological damper, 

which functions similarly to viscous fluid dampers, with a fluid of a given viscosity absorbing 

energy in the form of heat as it is forced from one position in the damper casing to another by a 

plunger rod. The main difference between standard viscous dampers and magneto rheological 

dampers is that magneto rheological dampers utilize a damping fluid that contains very small 

particles suspended hydraulic oil that are reactive to magnetic fields. The damping characteristics 

of magneto rheological dampers can be quickly varied by changing the viscosity of the magneto 

rheological fluid by exposing them to  magnetic fields of varying intensities (Wilson & 

Abdullah)  (Li & Tao, 2011). A schematic of a magneto rheological damper is shown in Figure 

6.  
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Figure 6 - Viscous Magneto rheological Damper 

 (Jiang & Christenson, 2012) 

 

Another innovative concept useful for semi-active damping is a regenerative force 

actuation network. Regenerative force actuation networks are groups of actuators that produce 

controlling forces while requiring very small amounts of external power. They are also capable 

of generating small amounts of power, which can then be used to power other dampers in the 

network so as to create a pseudo self-sustaining system of actuators (Scruggs & Iwan, 2005).  

There is a significant amount of research required on the topic before a regenerative force 

actuation network is ready for implimentation in a full scale structure, but the concept itself 

shows merit  (Scruggs & Iwan, 2005). 
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CHAPTER 3: MONETARY COSTS AND BENEFITS 

 

In some cases, direct cost-benefit analysis data was made available on various projects 

such that a project owner would know with certainty that installing a certain type and size of 

vibration damping system on their structure would save a certain amount of money compared to 

the undamped equivalent structure based on the material and labor prices of the day. 

Unfortunately these analyses are uncommon, likely because of the significant extra work 

involved in generating cost data for the structure. A designer would be required to design a 

structure once without damping and then add damping in with all the changes to structural and 

dynamic properties required and redesign the entire structure. For this reason, the quantity of 

data available in this most direct format is extremely limited. Nonetheless, a significant cache of 

data on the direct savings from the installation of structural damping systems is shown in the 

following chapter. Chapter 3 identifies the cost saving capabilities of passive damper systems in 

real world applications so that a starting point can be made by which to measure the potential 

cost savings of semi-active damping systems. In this way, once additional research is completed 

and accurate cost benefit analyses are carried out for semi-active dampers, there is a 

comprehensive list of passively damped structure for comparison. 

3.1.  SAVINGS FROM DAMPING SOLUTIONS 

 

250 West 55
th

 Street, New York, NY 

In the example of the building constructed at 250 West 55
th

 Street, New York, NY, the 

structure itself would have required an additional 500 tons of steel in added stiffness of members 

to adequately comply with acceleration and drift limitations based on wind tunnel testing. The 

use of the damped outrigger system meant that the additional stiffness was no longer necessary 
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and an additional 500 tons of steel could be removed from the structure because of the 

capabilities of the damping system. Material cost savings therefore summed to 1000 tons of steel, 

which at the time of construction equated to an approximate savings of $800,000. Total savings 

on the project because of the damping system were “several million dollars” (Jackson & Scott, 

2010). A photograph of the aforementioned structure is shown in Figure 7. 

 

Figure 7 - 250 West 55th Street Building 

 (Fedak, 2013) 

 

Probabilistic Life-cycle Cost Analysis of 3-story Concrete Structure 

A report on the findings of a study on the effects of damping on the life-cycle cost of 

buildings [in a seismically active area] stated that retrofitting a structure with viscous dampers 

would lead to a 22% reduction of the total life-cycle cost of the structure without dampers. The 

quantitative results of the simulation-based, probabilistic study of life-cycle costs of a building in 
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a seismic hazard zone with and without dampers installed are shown in Figure 8, where the total 

cost without dampers was $555,700 and the total cost with dampers was $115,710, which 

represented an 80% savings in the total life-cycle costs for the structure, totaling $440,000 

(Taflanidis & Gidaris, 2013).  Damper life-cycle cost is dependent on the type of damper 

selected for use, but costs can be generated by factors like fluid seal leakage, possible debonding 

of solid damper layers due to limited deformation capacity and temperature dependency and 

degradation of materials (Symans, et al., 2008).  

 

 

Figure 8 - Structure Life-Cycle Cost Comparison 

 Adapted from (Taflanidis & Gidaris, 2013) 

 

Life-cycle Cost Analysis of 26-story Steel Structure, Palo Alto, CA 

Another life-cycle cost analysis of damping for buildings was completed, this time using 

a simulated 26-story steel high-rise moment frame structure located in Palo Alto, California. The 
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estimated building cost and contents of the structure were $52.67 million each. 10,000 

simulations were carried out to measure the sensitivity of the model to various intensities and 

frequencies of excitation, time periods over which the simulation ran (from 5 to 100 years), 

damping ratios in the structure (which ranged from 5% to 30%) and thresholds used to determine 

the type and extent of damage, as well as the estimated cost of repair. Conceding that the study 

was somewhat limited in scope, the results are shown in Table 1, Table 2 and Table 3 and show 

that as the damping ratio was increased the average expected loss over the life of the structure 

decreased. There came a point, due to the law of diminishing return, when the cost of additional 

damping to the structure would not have been worthwhile. Table 2 shows the data from Table 1 

averaged over the expected life of the structure, while Table 3 shows the potential cost savings of 

additional damping over the 5% case. The data from Table 3 shows that it would be economical 

to increase damping to 10% if and only if the cost associated with the additional damping is $4.9 

million, to 20% if the additional cost is $8.3 million and to 30% only if the added cost is $10 

million. Similarly, if $3.25 million is spent to increase damping to 20%, the cost would be 

recovered from loss reduction in only 15 years (King, Jain, & Hart, 2001). 

 

Table 1 - Total Overall Expected Loss (millions of 2001 US Dollars) 

 Damping Ratio (% of critical) 

Time Period (years) 5 10 20 30 

5 1.03 0.58 0.31 0.16 

15 4.34 2.79 1.07 0.62 

30 11.45 6.55 3.15 1.45 

50 21.36 12.99 6.03 3.69 

100 50.31 30.81 15.46 9.93 

(King, Jain, & Hart, 2001) 
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Table 2 - Average annual overall expected loss (thousands of 2001 US dollars) 

 Damping Ratio (% of critical) 

Time Period (years) 5 10 20 30 

5 20.6 11.6 6.2 3.1 

15 28.9 18.6 7.2 4.1 

30 38.2 21.8 10.5 4.8 

50 42.7 26.0 12.1 7.4 

100 50.3 30.8 15.5 9.9 

(King, Jain, & Hart, 2001) 

 

 

Table 3 - Percentage reduction in total expected loss with respect to 5% damping 

 Damping Ratio (% of critical) 

Time Period (years) 5 10 20 30 

5 0 43.4 69.8 84.7 

15 0 35.6 75.2 85.7 

30 0 42.8 72.5 87.3 

50 0 39.2 71.8 82.7 

100 0 38.8 69.3 80.3 

Average 0 40 71.7 84.1 

(King, Jain, & Hart, 2001) 

 

San Bernardino Justice Center, San Bernardino, CA 

 A case study was completed in 2013 regarding the use of damping systems in a 

courthouse in San Diego, California and the San Bernardino Justice Center as it relates to the rate 

of return of an initial investment for a damping system in the form of reduced annual loss as well 

as reduced cost of business relocation after a seismic event. The study compared the cost-

effectiveness of a standard steel moment frame design to a moment frame design enhanced with 



www.manaraa.com

16 

 

viscous damping devices in chevron, reverse toggle and scissor-jack configuration in the case of 

the San Diego Central Courthouse, and base isolation in the San Bernardino Justice Center case. 

The results of this study are shown in Table 4 and Table 5 (Sarkisian, Lee, Hu, Garai, Tsui, & 

Reis, 2013). A rendering of the Justice Center is shown in Figure 9. 

 

Table 4 - San Diego Central Courthouse Damping Comparison 

Structural 

System 

Additional 

Initial Cost 

Average 

Annual Loss 

Average 

Annual 

Return 

Business 

Relocation 

Annual 

Return on 

Investment 

Normal Baseline $804,000 Baseline 140 days Baseline 

Viscous 

Damping 

$5.5m $346,000 $458,000 0 days +6.7% 

(Sarkisian, Lee, Hu, Garai, Tsui, & Reis, 2013) 

 

Table 5 - San Bernardino Justice Center Damping Comparison 

Structural 

System 

Additional 

Initial Cost 

Average 

Annual Loss 

Average 

Annual 

Return 

Business 

Relocation 

Annual 

Return on 

Investment 

Normal Baseline $1.5m Baseline 210 days Baseline 

Base 

Isolation 

$6.5m $0.27m $1.23m 0 days +18.5% 

(Sarkisian, Lee, Hu, Garai, Tsui, & Reis, 2013) 
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Figure 9 - San Bernardino Justice Center Rendering 

 (Ruano, 2011) 

 

Hotel Stockton, Stockton, CA 

The Hotel Stockton in Stockton, California was retrofitted with viscous dampers in 2003 

to improve the survivability of the historic structure during a seismic event, to reduce soft-story 

effects, and to provide better torsional seismic response without sacrificing floor space. After 20 

viscous fluid dampers and some column reinforcement were installed, the maximum seismic 

response was reduced by more than a factor of five, with a total cost of $1.3 million. The total 

construction budget was $24 million, so the seismic upgrade constituted only 0.5% of the budget 

(Miyamoto, Determan, Gilani, & Hansen, 2003). A photograph of Hotel Stockton is shown in 

Figure 10. 
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Figure 10 - Hotel Stockton 

 (Peterson, 2011) 

 

Citicorp Center, New York, NY 

The Citicorp Center in New York, New York was designed with tuned-mass dampers that 

cost $1.5 million dollars at the time of completion, but were estimated to have saved 2800 tons 

of structural steel that would have been otherwise required to satisfy deflection constraints on the 

structure. This steel savings equated to about $4 million in savings at the time of construction, 

which was saved 1.4% of the total structural cost overall (Connor, 2003). A photograph of the 

Citicorp Center is shown in Figure 11. 



www.manaraa.com

19 

 

 

Figure 11 - Citicorp Center 

 (Hevesi, 2006) 

 

Crystal Tower, Osaka, Japan 

 The Crystal Tower in Osaka, Japan utilizes a pendulum tuned mass damper in the form of 

six thermal storage tanks hung from 13-foot-long cables on the top of the structure. The added 

energy dissipative properties cost the building owner only $350,000 to add to the structure, 

which was less than 0.2% of the total structure cost. The damping system reduced the wind-

induced structure response by about 50% (Connor, 2003). A rendering of the Crystal Tower is 

shown in Figure 12. 
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Figure 12 - Crystal Tower 

 (Photo Tour of Famous Attractions: Osaka PIctures, 2007) 

 

Fire Department Command and Control Facility, Los Angeles, CA 

 The Fire Department Command and Control Facility in Los Angeles, California is a two-

story, steel-framed structure that utilizes elastomeric bearing pads to isolate it from ground 

motion during a seismic event. Conventional and isolation designs were both considered with the 

stipulation that the functionality of the structure had to be maintained after an extreme design 

event. Utilizing base isolation was found to yield a cost savings of 6% over the conventional 

design, and expected losses were reduced by a factor of 40 (Connor, 2003). A photograph of the 

structure is shown in Figure 13. 

 

Figure 13 - Los Angeles Fire Department Control Facility 

 (Building that use Base Isolation Technology, 2010) 
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Evans and Sutherland Manufacturing Facility 

In Salt Lake City, Utah while designing the Evans and Sutherland Manufacturing 

Facility, the conservative approach taken by the engineers with regards to design loading offset 

the cost savings offered by the base isolation, so the total effect of the base isolation system and 

larger design loading was a net increase in the structure cost of 5%, or $400,000. The owners 

deemed the added safety and damage reduction capabilities for the building important because 

the contents of the structure were valued at over $100 million (Connor, 2003). 
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Proposed 80-story structure, Toronto, Canada 

A structure was proposed in downtown Toronto that was to be 75 stories tall and the 

owner requested that the overall height be extended to 80 stories. Design engineers began 

studying possible damping solutions for the expected wind loading on the structure and 

determined that the most practical system was two tuned sloshing dampers each consisting of a 

large tank of a predetermined amount of water on the upper stories of the structure whose inertia 

would counteract the displacement and acceleration from the expected wind excitation. The 

tanks would also be used for an emergency fire suppression system. The increase in the damping 

characteristics of the structure due to the tuned sloshing dampers allowed designers to reduce the 

amount of concrete, steel and post-tensioning strands used in the remainder of the structure such 

that over 1400m
3
 of concrete, 88,000kg of reinforcing steel and 9,300kg of post-tensioning steel 

strand could be eliminated from the design, which summed to approximately $500,000 of 

savings that could be used to offset the cost of the damping system. The reduction in building 

material was also estimated to have saved 670 tons of greenhouse gas emissions, which was the 

equivalent of removing 140,000 cars from the road for one day (Irwin, Kilpatrick, Robinson, & 

Frisque, 2008). 

Comparison Study of Conventional versus Damped Construction, California 

A structure constructed in 2007 in California was the first of its kind; engineers designed 

the steel moment resisting frames in the seismic region using conventional practice, and a 

separate design was completed using ASCE 7 guidelines with viscous Damping Devices. 

Comparison of the analyses of the expected performances for each design given 500-year and 

2500-year return periods for seismic loading showed that the design that utilized the viscous 

dampers had superior seismic performance. The design that utilized dampers had a long period, 

low frequency structure with low acceleration, and a vastly reduced story drift ratio of 1%, 
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largely as a consequence of the dampers themselves. Table 6 presents a relative cost comparison 

between designs. The additional cost of the dampers was offset by the savings in reinforcing 

steel and foundation concrete volume, so the two designs have similar initial costs. Following a 

design-level earthquake, the conventional structure would provide life safety but would sustain 

significant damage requiring repair work; the cost of which would be in addition to the loss of 

operation of the structure while repairs were being made. Conversely, the structure designed with 

viscous Dampers would be expected to sustain very little damage and remain fully functional 

(Miyamoto & Gilani, Design of a New Steel-Framed Building Using ASCE 7 Damper 

Provisions, 2008). Analysis of  Table 6 combined with material cost data from the year of 

construction, where concrete cost and steel cost were $75 per cubic yard  (Concrete Network, 

2013) and $545 per ton (Index Mundi) respectively shows a cost savings of $28,000 in material 

from the implementation of the damper. 

 

Table 6 - Initial Cost Comparison of Standard vs. Damper Design 

 
Conventional 

Design 

Viscous Damper 

Design 
Comments 

Moment Resisting 

Frame Members 
547,000 pounds 447,000 pounds 

Savings of 100,000 

lbs 

Grade Beams 240 Cubic Yards - 

Savings of 240 

Cubic Yards of 

concrete and 18 

tons of reinforcing 

steel 

Viscous Dampers - $170,000 
Additional Cost of 

Dampers 

(Miyamoto & Gilani, Design of a New Steel-Framed Building Using ASCE 7 Damper 

Provisions, 2008) 
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Pall Dynamics Damper Projects 

Pall Dynamics is a company founded in 1984, which specializes in the construction of 

Friction Dampers, which are a form of passive damping incorporated into the construction of 

cross bracing of conventional structural framing. Using specially treated metals and a unique 

manufacturing process, Pall Dynamics has used its friction dampers on dozens of projects to the 

benefit of their customers. Some examples are as follows: The Seismic Upgrade of a Boeing 

Commercial Airplane Factory saved the company $30,000,000 compared to conventional 

structural seismic-resisting methods; The Moscone West Convention Center underwent an 

expansion and retrofit, and the owners saved $2,250,000 over the cost of a viscous damper 

configuration; the Maison 1 McGill building utilized Friction Dampers in lieu of concrete shear 

walls, which resulted in a savings of $500,000 over the cost of a conventional design (Projects: 

Pall Dynamics). 

Earthquake Protection Systems Base Isolation Projects 

 Earthquake Protection Systems designs and manufactures a base isolation system for 

structures using proprietary “triple pendulum” technology. Base isolation bearings produced by 

Earthquake Protection Systems have been installed on many structures to the financial advantage 

of the structure owners, including but not limited to the following: The San Francisco 

International Airport Terminal was outfitted with a base isolation system that saved 680 tons of 

structural steel, which equates to a savings of $370,000; The Benicia-Martinez Bridge in the San 

Francisco Bay Area was outfitted with a base isolation system from Earthquake Protection 

Systems, which saved over $30,000,000 over conventional rubber base isolation pads. 

(Earthquake Protection Systems, 2011) 
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CHAPTER 4: SUPERIOR PERFORMANCE FROM SEMI-ACTIVE DAMPING 

 

Although structural damping systems can have direct monetary benefits, there are other 

benefits inherent in structural damping that may have a profound effect on the performance and 

life cycle cost of a structure. Semi-active damping systems have an improved overall 

performance as well as a wider range of excitation spectra over which they are effective when 

compared to passive damping and even more so over undamped structures. Chapter 4 aims to 

demonstrate the superior performance capabilities of semi-active damping systems over passive 

damping systems. Combined with Chapter 3, which illustrates how passive damping can reduce 

structure costs, Chapter 4 illustrates the possibility of a better performing and potentially lower 

cost damping solution. 

4.1. PERFORMANCE BENEFITS OF SEMI-ACTIVE DAMPING SYSTEMS 

 

Reasoning for the separation of Chapters 3 and 4 are because structural damping systems 

may influence the response of a structure to extreme loading by reducing the overall story drift 

by a certain percentage, which is an important factor to take into consideration while designing 

the structure and choosing which motion damping system to utilize, however if the reduction in 

story drift for a given excitation causes the behavior of the members in the structure to shift from 

plastic response to elastic response the potential cost savings would be monumental and easily 

quantifiable with regards to savings of damaged members, etc. If the behavior of the members in 

the structure is reduced from plastic deformation to a smaller magnitude of plastic deformation, 

however, the reduction in overall structural damage may be significantly reduced with regards to 

production time lost due to displacement of occupants for building repairs, non-structural 

damage, and personal injury law suits from structure occupants, etc. While the overall cost 
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savings from the aforementioned reduction in plastic deformation in the event of a given design 

excitation can be calculated using a large number of assumptions and a host of Monte Carlo 

simulations to test for the sensitivity of the cost to a variation of the assumptions made, the entire 

process is lengthy, complicated and somewhat arbitrary given the amount of information that 

varies depending on minute factors. For these reasons the author has decided to make note of the 

advantages that semi-active damping systems can provide over passive devices with regards to 

the life-cycle cost of a structure, albeit separately from the more explicitly defined monetary 

advantages discussed in Chapter 3. 

Semi-Active Damping of a 39-Story Office Building 

A case study was completed in 2004 for a 39 story office building in an urban 

environment that was situated immediately adjacent to a 52 story tower. During wind tunnel 

testing, vortex shedding from the geometry of the 52 story tower was expected to create 

accelerations in the 39 story building that were double the industry standard for office buildings. 

Several possible solutions were investigated, including adding stiffness to the structure, using 

tuned mass dampers, tuned sloshing dampers and viscous dampers. Tuned mass dampers and 

tuned sloshing dampers were found to be quite effective, but also required the use of valuable 

office space near the top of the tower and were very expensive; viscous dampers were cost 

prohibitive at that time because there was a shortage of manufacturers in the US. Viscous 

dampers were chosen for the project along with motion amplification devices in the form of 

toggle braces to compliment the large force output to small displacement characteristics of 

viscous dampers and to reduce the required number of dampers in the structure. A total of 30 

viscous dampers were used on the structure, which changed the effective damping ratio of the 

structure to around 3% and reduced the dynamic behavior of the structure by 30%. The cost of 
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the dampers and toggle braces was less than $1 million, without which the structure as designed 

would not have been feasible (McNamara, Huang, & Wan, 2004). 

A study in 2011 simulated the same 39-story office tower to compare the performance of 

semi-active and passive control devices as compared to an undamped case. One simulation 

compared the semi-active case to the fluid dampers installed by limiting the capacity of the semi-

active modules to the same level as the fluid dampers. The performance semi-active damping 

system with the capacity reduced to the level of the existing fluid damper system is shown in 

Table 7. The study goes on to demonstrate that the performance of the 30 currently installed 

passive fluid dampers could be matched by as few as 10 semi-active dampers, which would 

represent significant cost savings with regards to maintenance and initial cost of installation, 

while simultaneously allowing more freedom to the owner with regards to the use of the floor-

space in the structure (Laflamme, Taylor, Maane, & Connor, 2011). Another study continued 

work from previous studies on the application of a new kind of semi-active damper known as a 

“Modified Friction Device” yielded data shown in Table 8. This data validates that as few as 10 

semi-active dampers were needed to accomplish the same level of structural damping as 30 

viscous dampers in the same direction. The study also goes on to demonstrate the cost-

effectiveness of semi-active dampers by showing an itemized cost of damper installation on the 

structure, where the case utilizing semi-active damping achieved a cost of installation $180,000 

lower than the viscous damping alternative, which represented an 18% savings (Laflamme, 

Control of Large-Scale Structures with Large Uncertainties, 2011). 
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Table 7 - Comparison of Semi-Active System with Passive System Performance 

 
X-direction reduction Y-direction reduction 

Displacement Acceleration Displacement Acceleration 

Semi-Active 42% 59% 33% 27% 

Passive 28% 50% 22% 23% 

(Laflamme, Taylor, Maane, & Connor, 2011)  

 

Table 8 - MFD Compared to Viscous Cost 

Damping 

Strategy 
Direction 

# of 

Devices 

Required 

Device 

Cost 

Brace 

Cost 
Total 

Viscous 
X 30 $5,000 $9,000 

$975,000 
Y 30 $5,000 $13,500 

MFD 
X 10 $15,000 $9,000 

$795,000 
Y 30 $5,000 $13,500 

(Laflamme, Control of Large-Scale Structures with Large Uncertainties, 2011) 

 

3-Story Single-bay Structure Comparing Passive to Semi-Active Damping 

A study that took place as early as 1996 highlights the potential for advancement of the 

use of semi-active control of structural damping. The study used the structural input from the El 

Centro earthquake to compare passive damper performance to semi-active, magneto rheological 

damper performance. The tests were conducted on a scaled-down model of a 3-story, single-bay 

steel structure that used chevron-style bracing controlled by dampers while varying the strategies 

for acceleration feedback of the semi-active damper and results were conclusive; while the 

passive damper performed significantly better than the undamped case, the semi-actively damped 

structure showed a 24.3% reduction in peak 3
rd

 floor displacement and a 29.1% reduction in 

maximum story drift over the passively damped case. The semi-active damping was capable of 

reducing the peak 3
rd

 floor displacement by 74.5% and the peak acceleration by 47.6% over the 

undamped case, and the authors of the study admit that with further research into control 

algorithms a higher level of performance could have been possible. It is reasonable to assume 
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that while semi-active damping showed promise as a prominent damping system relative to 

passive damping in 1996 the technology has advanced significantly since that time, and 

performance levels are even higher (Dyke S. J., Spencer Jr., Sain, & Carlson, 1996).  

3-story Semi-Active versus Passively Damped Comparison 

A study in 2013 used a simulated 3-story, single-bay structure with a single chevron-style 

damper configuration subjected to seven different earthquake excitations to yield accurate 

performance records for a magneto rheological damping system with varied control algorithms. 

A reduction in peak displacement, inter-story drift and acceleration of 34%, 24% and 12% 

respectively versus the passively damped case was averaged from the seven excitations, and the 

results of the study illustrated that the quality of a control algorithm was important; even 

utilizing magneto rheological dampers with a sub-optimal control algorithm would yield better 

results than a passive damping system (Pohoryles & Duffour, 2013). 

Semi-Active Dampers Used in Rail Transportation 

A study was completed in 1998 describing the development of a semi-active damping 

system for use in rail vehicles to improve ride comfort for passengers. Rail cars were outfitted 

with a multitude of  dampers, potentiometers, accelerometers and stroke sensors to provide 

feedback data at near-real-time to fine tune the performance of the ride control as conditions and 

excitations varied, due to passenger movement, imperfections in the track surface or tilt due to 

angular acceleration while rounding a corner. High pass filters were used during data processing 

to filter out low freqency noise in the signal caused by gravitational and angular accelerations to 

more accurately determine the requirements of the damping system. Evaluation of the 

performance for the semi-active magneto rheological damping system for railway cars showed 

that an improvement of up to 15% in ride quality, including displacement and acceleration 

experienced by passengers, could be obtained at the time and it is reasonable to assume that 
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advances in technology since that time are sufficient to produce even better results (Stribersky, 

Kienberger, Wagner, & Muller, 1998). 

Semi-Active Dampers Used in the Damping of Cables on Bridges 

Another example of how structural damping systems could be utilized in somewhat 

unorthodox ways was discussed in a paper published in 2007 on the topic of damping of steel 

stay cables used in cable-stay bridges. The paper stated that cables used for cable-stay bridges 

were prone to vibration due to weather effects like wind and precipitation. The vibration would 

cause reduced service life of the cables over time because of premature breakdown of corrosion 

protection, and public confidence in the structure was diminished. The use of a semi-active 

magneto rheological damper located 2% of the cable length from one support was found to 

reduce cable vibration by as much as 63% by adding as much as 8% equivalent modal damping 

of the first mode of vibration (Johnson, Baker, Spencer Jr, & Fujino, 2007). 

Semi-Active Dampers to Suppress Rotational Forces 

 A study performed in 2012 showed the efficacy of using semi-active tuned mass dampers 

to suppress rotational and translational forces in structures. Semi-active tuned mass dampers 

work for a wide, varying frequency band by measuring the structural response to an excitation 

and varying the location of weights attached to a non-moving mass such that the moment of 

inertia of the entire damper effectively counteracts the structural response. Proper use of data 

feedback in conjunction with this rotational damper was found to reduce the peak values of 

rotation, angular velocity and angular acceleration by 73%, 75% and 78% respectively when 

compared to the performance of a standard tuned mass damper system. Because of the varying 

characteristics of the semi-active tuned mass damper, the frequency band over which the damper 

is effective is much larger than that of a standard tuned mass damper. The only restrictions on the 

frequency over which the damper could function were based on the length of the rails that the 
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weights were meant to slide on, as shown in Figure 14. The semi-active tuned mass damper 

provides a much simpler, less maintenance intensive solution for the problem of rotational 

response of structures when compared to that of a system of variable stiffness absorbers, which 

may be complicated and more difficult and expensive to maintain (Mohammadi-Ghazi, 

Ghorbani-Tanha, & Rahimian, 2012). 

 

 

Figure 14 - Semi-Active Tuned Mass Damper for Rotation 

 (Mohammadi-Ghazi, Ghorbani-Tanha, & Rahimian, 2012) 

 

Semi-Active versus Passive Damping of Tall Structures 

A paper published in 2012 presented research on the performance of “smart tuned-mass 

dampers” and their effectiveness at suppressing wind-induced lateral-torsional motion of tall 

structres. The authors of the paper worked with two damper construction companies throughout 

the design phase of the project to estimate the actual cost of the implementation of damping 

systems that are typically prejudiced as having exceptionally high upfront and maintenance 

costs. The advantage of smart tuned-mass dampers over standard tuned mass dampers is that 

they address the shortcomings of standard tuned mass dampers, such as their difficulty to 

optimize because of the uncertainties of the structural dynamic properties and the excitation, 

while incorporating the strengths of semi-active systems, such as their ability to adapt to a wide 

range of conditions like an active system would, but without the energy demands of a fully active 
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system. Averaging the expected costs of smart tuned-mass dampers from the two companies for 

various sizes of structures yielded the chart shown in Figure 15, where the generalized mass of 

the structure can be matched with the reduction in acceleration required to produce an estimation 

of the cost of a smart tuned-mass damper for the given configuration. After a series of wind 

tunnel tests were performed on a laboratory-scale model of a wind-sensitive structure with and 

without the use of smart tuned-mass dampers, and the smart tuned-mass dampers were found to 

decrease the peak response of the structure by 25%, while the damper system was estimated to 

only account for 2% of the total structure cost, with maintenance costs for 30 years after the 

initial installation only accounting for 0.2% of the total structure cost. The estimation of 

maintenance cost is especially relevant because of the percieved high maintenance costs of 

damping systems over the life of a structure, where the aforementioned study dispels that 

preconcieved notion (Tse, Kwok, & Tamura, 2012). 
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Figure 15 - Estimated Cost of a Smart Tuned Mass Damper 

 Adapted from (Tse, Kwok, & Tamura, 2012) 

 

20-story Semi-Active versus Undamped Comparison 

A study in 2004 performed a comparison of a 20-story undamped structural response to 

seismic loading with the same 20-story structure outfitted with semi-active magneto rheological 

dampers. Using 5 sensors to detect the response of the structure so that the characteristics of the 

magneto rheological dampers could be optimized in real time, the maximum acceleration of the 

structure was reduced by 48%, while the maximum drift ratio of the structure was reduced by 

34% (Fukukita, Saito, & Shiba, 2004). Another study verified that structural response was 

limited by 46% for similar loading conditions (Wilson & Abdullah). Yet another study tested a 

6-story structure outfitted with only two  magneto rheological dampers excited with a scaled 

version of the El Centro earthquake and found a maximum reduction in structural response of 
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35%  (Jansen & Dyke, 2000). Still another study tested a multiple degree-of-freedom structure 

subjected to the El Centro earthquake excitation and magneto rheological dampers reduced the 

displacement amplitudes by 78%, 47% and 39% for the first, second and third floors, 

respectively, and the interstory drift was reduced by 87% and 86% for the first-to-second and 

second-to-third story drifts, respectively (Gu & Oyadiji, 2008). 

20-Story Semi-Active versus Undamped and Passively Damped 

A 2004 study on the effectiveness of magneto rheological dampers deployed on a 20-

story structure that was identical to one used in prior studies for viscous dampers. Using an 

identical structure allowed the researchers to accurately compare the behavior of the system 

against an undamped case and a passively damped case with a very small margin of uncertainty 

due to differences in damper and structure configuration. When the system was exposed to 

identical excitation in laboratory conditions, the MR dampers were found to reduce the structural 

response by 60%, and the number of plastic hinges that were formed during the loading phase 

was reduced by a significant amount (Yoshida & Dyke, 2004). 

Semi-Active and Passive Damping Combination (Unoptimized) 

 A further study completed in 2012 found that the combination of viscous fluid dampers 

with an innovative new type of semi-active variable stiffness device was able to reduce 

acceleration and deformation by 20% for moderate ground motions, although optimization of the 

technology had yet to be completed (Pasala, 2012). 

Semi-Active versus Passively Damped 4-story Structure 

 A study in 2007 was completed on a 4-story steel structure with a fixed base condition, 

base isolated condition, viscous dampers installed and a case with semi-Actively damped 

condition under various seismic loading conditions. After many simulations to test the sensitivity 

to variation of the test results with regards to changes in device and structural parameters, it was 
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concluded that semi-Active damping reduced peak acceleration by 60% compared to a well 

designed viscous damper configuration.  (Gavin & Zaicenco, 2007) 

Cost-Effectiveness Evaluation of an Semi-Active Damper System based on a Life-Cycle 

Cost Concept 

 A study that took place in 2010 evaluated the cost-effectiveness of a magneto rheological 

damper system on cable-stayed bridges under earthquake loadings. The economic efficiency of 

the semi-active damper system is addressed by the concept of life-cycle cost analysis. To 

evaluate the expected damage cost the probability of failure was estimated using simulations of a 

parametric study, which varied the scale of the cost of damage to the structure and the cost of the 

damper to determine which combinations of variables were most and least conducive to the use 

of the semi-active damping system and under which circumstances a damping system would not 

be cost effective. The results of the study concluded that the scale of the damper cost had very 

little influence on the cost-effectiveness of the semi-active damping system; although the scale of 

the damage cost significantly influenced the cost-effectiveness of the damping system, it was 

found that the semi-active damping system was very cost-effective in regions with moderate to 

strong seismicity (Hahm, Ok, Park, Koh, & Park, 2012).  

 A related study regarding the cost-effectiveness of seismic isolation as it relates to life-

cycle cost analysis found that although vibration damping measures can add to the safety of a 

structure and be cost effective, the costs of dampers relative to their vibration damping 

capabilities are not linear. As shown in Figure 16, the possibility of “over-designing” the 

damping system for a structure exists such that the addition of the damping system will add 

significant cost over the life of the structure, but with significant reduction in expected damage 

costs from seismic events  (Park, Koh, & Song, 2004). 
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Figure 16 - Minimum Lifecycle Cost and Optimal Design 

 (Park, Koh, & Song, 2004) 
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CHAPTER 5: DISCUSSION 

 

 The previous chapters have described the various types of loadings and dampers, the 

benefits of passive dampers and the performance advantages of semi-active dampers over 

passive dampers, respectively, in order to portray the possible benefits of semi-active dampers 

over passive dampers. The conclusions drawn from the compilations of the aforementioned 

research topics are presented in section 5.1, including the discussion of the current research gap. 

The results show that there use of passive dampers can be effective at reducing structural cost 

and response and that semi-active dampers can out-perform passive dampers, possibly even at a 

lower cost.  

5.1 ANALYSIS AND CONCLUSIONS 

 

 A compilation of the direct cost savings from the application of Passive dampers from 

Chapter 2 is shown in Table 9, where the median savings was $800,000 and the average cost 

savings was $5,800,000. These data show that while the possible savings from damping solutions 

can be significant, there are many factors that influence the available savings. Structure size and 

level of importance, seismicity of the region, and socioeconomic costs involved in repair of the 

structure heavily influence possible benefits of a damping system.  Obtaining more data points 

would be useful for the validation of average and mean cost savings data. As previously 

mentioned, obtaining such data is difficult and time consuming. Engineers would be required to 

design the structure using conventional methods and obtain an estimated cost of construction, 

and then redesign the structure using the design considerations for the damping system properties 

and obtain another cost estimate, including life-cycle costs for the expected service life of the 

structure. The life-cycle cost analyses used in the determination of the monetary savings and 
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expenses of dampers were defined as the sum of the initial construction cost and the expected 

cost of the damage over the course of the lifespan of the structure including socio-economic 

effects of a collapsed structure (Hahm, Ok, Park, Koh, & Park, 2012). 

Chapter 4 conclusively shows both the superior performance of semi-active dampers in 

similar test configurations as compared to the passively damped cases, as well as the ability of 

semi-active dampers to achieve similar performance levels as passively damped cases with as 

few as one third the number of dampers utilized which translated to as much as an 18% reduction 

in cost. Semi-active dampers could have the potential to generate significant reduction in the 

upfront cost of installing a structural damping system, which is a main deterrent to damping 

systems for structure owners. The enhanced performance of semi-active dampers could also 

reduce the cost of damage repairs over the life of the structure, thereby further reducing the life-

cycle cost of a structure. Semi-active damping systems also share many of the same benefits as 

viscous damping, such as more freedom with regards to the configuration of floor space of the 

structure. This is particularly crucial when compared to tuned mass dampers, which tend to take 

up large amounts of space higher up in the structure where floor space is of higher value.  

Unfortunately, at this time there is very little data on the reliability of semi-active 

dampers, or how the probability of failure of semi-active dampers and their associated sensors 

change with varying temperatures and levels of use over the life of the system. Semi-active 

dampers are also sensitive to loss of power, a condition which is likely given the catastrophic 

nature of seismic events that structural damping systems are predominantly designed to mitigate. 

Some types of semi-active dampers such as the magneto rheological damper have received 

attention over the last decades because of their exceptionally low power requirement and fail-

safe nature in the event of a loss of power, but their level of applicability in structural systems is 
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inadequate for actual integration and adoption on a wide scale at this time (Laflamme, Taylor, 

Maane, & Connor, 2011). Another device, the MFD that has been mentioned previously, also 

requires very little power and even has some performance benefits (as high as 10% reduction in 

acceleration (Laflamme, Taylor, Maane, & Connor, 2011)) when in a completely unpowered 

state, however given the high likelihood of power failure and the significantly reduction in 

performance it is clear that reliability will be a concern of structure owners considering semi-

active damping systems at this time.  

Table 9 - Direct Cost Savings Summary 

Type of Damper Direct Savings Structure Type 

Viscous  $          800,000  Steel Moment Frame 

Viscous  $          440,000  Multi-Story Concrete 

Viscous  $          460,000  Steel Moment Frame 

Viscous  $            28,000  Steel Moment Frame 

Tuned Mass  $       4,000,000  Steel Moment Frame 

Tuned Sloshing  $          500,000  Steel Moment Frame 

Friction  $    30,000,000  Steel Moment Frame 

Friction  $       2,250,000  Steel Moment Frame 

Friction  $          500,000  Multi-Story Concrete 

Base Isolation  $          370,000  Steel Moment Frame 

Base Isolation  $    30,000,000  Cantilever Bridge 

Base Isolation  $       1,200,000  Steel Moment Frame 

 

5.2 RECOMMENDATIONS 

 

Much work remains to be done on the topic of assessing true costs of semi-active 

damping systems.  

 Factors such as electricity costs and requirements, and methods for ensuring the 

continued functionality of the damping system in the event that the structure loses electrical 

service from the main power grid must be researched. Without information on these factors, 

accurate life-cycle cost analyses cannot be completed.  
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 More data on the cost versus performance of semi-active damping systems are needed, 

including detailed life-cycle cost analyses and performance evaluation with regards to undamped 

and passively damped cases.  A multitude of structural configurations should be tested so as to 

facilitate comparison between data from pretested configurations and real world applications. 

 The topic of controller performance is also one of concern. Many tests have been 

conducted with sensors that are brand new, and with control algorithms that have been perfectly 

optimized for predetermined excitation ranges and amplitudes to be tested, which raises 

questions as to how performance may be affected by sensors that have been in service for many 

years in harsh conditions, and by excitations that are randomized and therefore possibly not 

within the range for which the system has been perfectly optimized. This is especially important 

because of the long expected service life of structures and their associated damping systems, 

which include the sensors required for operation. Also testing of randomized loading is an 

important step in the assessment of performance of semi-active damping because of the inherent 

unpredictability of the strength of the seismic or wind excitation that a structure may be exposed 

to in its lifetime.  

 Further consideration must also be given to the codes by which engineers design 

structures. Structural damping systems were primarily developed as a means of protecting 

buildings from seismic and wind load damage. Owners expect structures equipped with 

structural damping systems to suffer only minimal damage during an earthquake, but this 

expectation is in conflict with current building codes that allow significant damage to damped 

structures. Building codes only ensure that structures equipped with damping systems “will be at 

least as safe as conventional buildings” and have the same protection against collapse as 

undamped structures (Zayas, Seismic Isolation Design for Continued Functionality, 2013).  Over 
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the last 20 years, most of the economic losses caused by earthquakes have resulted from non-

structural damage and loss of facility use from damage to non-structural building components 

during moderate ground shaking.  The Federal Emergency Management Agency’s “Seismic 

Performance Assessments of Buildings” (FEMA 58) is a computational tool that estimates 

expected earthquake damage to structures and non-structural components (Zayas, Seismic 

Isolation Design for Resilient Buildings, 2013). It was reported that for typical undamped 

structures, the damage expected in a seismically active zone over a 50 year period was equal to 

an additional 22% of the initial construction costs of a structure, while effective use of damping 

systems could lower earthquake losses by as much as 97% (Zayas, Seismic Isolation Design for 

Resilient Buildings, 2013).   

 To satisfy owner expectations of minimal earthquake and wind damage, there is a 

movement toward codifying criteria for “Continued Functionality” where damage to structural 

and non-structural components will be limited to less than 2% of the building replacement cost. 

A “90% Reliability of Continued Functionality” is defined as limiting damage to less than 2% of 

the replacement costs for an earthquake with a less than 10% chance of being exceeded in 50 

years (Arup & Arup, 2013). FEMA 58 methodology and software can be used to calculate the 

dollar value of the expected seismic damage, which can be used by the structure owner and 

design engineer to select the type and size of damping system that is most cost-effective for the 

project. 
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